Variance Estimation in Spatial Regression Using a Nonparametric Semivariogram Based on Residuals

نویسندگان

  • Hyon-Jung Kim
  • Dennis D. Boos
چکیده

The empirical semivariogram of residuals from a regression model with stationary errors may be used to estimate the covariance structure of the underlying process. For prediction (kriging) the bias of the semivariogram estimate induced by using residuals instead of errors has only a minor eeect because the bias is small for small lags. However, for estimating the variance of estimated regression coeecients and of predictions, the bias due to using residuals can be quite substantial. Thus we propose a method for reducing this bias. The adjusted empirical semi-variogram is then isotonized and made conditionally negative-deenite and used to estimate the variance of estimated regression coeecients in a general estimating equations setup. Simulation results for least squares and robust regression show that the proposed method works well in linear models with stationary correlated errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. No...

متن کامل

Estimating linear functionals of the error distribution in nonparametric regression

This paper addresses estimation of linear functionals of the error distribution in nonparametric regression models. It derives an i.i.d. representation for the empirical estimator based on residuals, using undersmoothed estimators for the regression curve. Asymptotic efficiency of the estimator is proved. Estimation of the error variance is discussed in detail. In this case, undersmoothing is n...

متن کامل

Variance Function Estimation in Multivariate Nonparametric Regression

Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...

متن کامل

Variance function estimation in multivariate nonparametric regression with fixed design

Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001